# Lighting the Way to a Smarter Grid

#### Wanda Reder

Vice President – Power Systems Services S&C Electric Company







#### Overview

- S&C Electric Company
- A Changing Power and Energy World
- Investment Anticipated
- Smart Grid Realities
- Challenges and Advancements
- Managing the Journey







## **S&C Electric Company**

- Headquartered in Chicago
- Operations in:
  - Milwaukee, WI
  - Alameda, CA
  - Orlando, FL
  - Canada
  - Mexico
  - Brazil
  - China
  - United Kingdom
- 2600 employees
- Founded 1911
- Employee-owned as of 2007





S&C Electric Company John R. Conrad Industrial Campus Chicago, Illinois

Power & Energy Society







## Changing Power and Energy World



Growing Population, More Electronics

Driving Technology:



Rising Cost of Energy



**Increasing Environmental Requirements** 











Modernization

Reliability



**Escalating Security Concerns** 



**Heightened Investor Demands** 





## Recognizing the Need for Power

- Consumer electronics represent the largest single use for domestic electricity
- Computers and gadgets will account for 45% of electricity used in the home by 2020
- Increases demand for near-perfect power quality and uninterrupted power availability

at ILLINOIS INSTITUTE OF TECHNOLOG







## And, the Response ...

- Reliability is not changing or differentiated
- Assets generally aging, under-utilized and not very efficient
  - Electrical losses
  - Generation capacity factor
  - Spinning reserve drops efficiency
  - Declining US load factor
- Vulnerable during peak conditions occurring ≤ 1% of the time
- Uncertainty and complexity: intermittent sources, distributed options







## Business is Changing

#### **Our Past**

Regulated business models

Large generation stations

Centralized dispatch

Minimal constraints

Outages "tolerated"

Grid "over designed"

Radial distribution

Homogeneous technology

Slow distribution operations

Uni-directional power flow

#### **Our Future**

Emerging "customer choice"

Distributed & green resources

Distributed intelligence

Pressures for "green power"

Less tolerance of outages

Infrastructure exhausted

Looped or meshed distribution

Mixing old with new

Near real-time micro-grids

Multi-directional power flow





## Major Investment Anticipated

SGIG Spending

\$7.9 billion with cost share to be spent through 2015

#### **Adoption Factors:**

- Economy
- Policy
- Technology
- Consumer Acceptance
- Reliability Needs

EPRI Estimate



\$338 - \$476 billion needed through 2030

EPRI. Estimating the costs and benefits of the smart grid: A preliminary estimate of the investment requirements and the resultant benefits of a fully functioning smart grid. EPRI, Palo Alto, CA; 2011.

Brattle Group Estimate



Chupka, M.W. Earle, R., Fox-Penner, P., Hledik, R. Transforming America's power industry: The investment challenge 2010 – 2030. Edison Electric Institute, Washington D.C.,: 2008.



Graphics adapted from a US DOE Office of Electricity Presentation on ARRA Smart Grid Projects



\$880

billion

needed

through

2030

## **Smart Grid Realities**





dapted from an EPRI Presentation



#### Reactive Power Compensation

- Inverter-based dynamic compensation using 1.25 MVAR modules
  - 264% continuous rating for 2 4 seconds
  - Use in conjunction with mechanically switched devices

## Dynamic Compensation Installations to Meet Grid Codes Typically includes power factor and Low Voltage Ride Through (LVRT)



+/- 12 MVAR for 90 MW Wind Park in New Mexico, USA. Includes 91 MVAR of switched capacitors



 $\pm 6.25/16.5$  MVAR for 48 MW Wind Park in the UK with 8 MVAR of switched capacitors and 7 MVAR switched reactor





#### **Energy Storage**

- Operational Challenges
  - Wind generation: mismatched with load
  - Transmission constraints
  - Large penetration of rooftop solar
  - Constraints for electric vehicles
  - Declining load factor
- Growing interest for energy storage to be a "balancing energy" source
- Varying benefit streams
  - Asset deferral, reliability, renewables, frequency regulation, peak reduction
- Approval challenges



Luverne, Minnesota NaS Battery Installation

1.0 MW for 6 hours
Used for wind farm smoothing to facilitate dispatched wind and peak shaving





#### Micro-Grid Solution

- High Speed Fault Clearing System is a non-interruptible micro-grid technology for underground distribution systems
- Main loop faults are cleared using:
  - High-speed communications
  - Fault interrupter switchgear tripping
- Maximum 6 cycle fault clearing time
- A fault on a backbone segment is automatically isolated; power flow to loads continues uninterrupted
- SCADA is not required for protection





Specially configured Remote Supervisory Vista Underground Distribution Switchgear





## Distributed Intelligence

- Harnesses capability of microprocessors
- "Simpler" reconfiguration logic
  - Dynamic
  - Processes multiple contingencies
  - Remote upgrades
- Robust, redundant, resilient, secure
- Scalable to build incrementally
- Minimizes latency concerns / issues
- Graceful performance under duress







## Community Energy Storage

Distributed energy storage connected to the secondary of transformers serving a few houses or small commercial loads:

- Local voltage regulation
- Peak shaving
- Buffer plug-in vehicles
- Aggregate control



Smooth effects of distributed sources, improves reliability, mitigates voltage sag, reduce losses, provides emergency transformer relief, improves grid utilization





## Need for Speed Varies by Application







#### Benefits ARE Possible: Balance is Needed

- Many benefits -- efficiency, savings, reduced emissions, energy security, economic growth, reliability....
- Solutions require balance well beyond technology

#### **Consumers**

Awareness, perception
Early engagement
Behavioral shifts
Education
Privacy

#### **Policies**

Certainty and predictability
Jurisdictional clarity
Stability: regulation / incentives
Reliability for digital economy
Clear standards

#### **Markets**

Business models
Cost allocation
Power markets
Utilities and suppliers

#### **Technologies**

Electric vehicles
Renewables
Automation
Storage





## Managing the Innovation Journey

- Establish a long-range plan addressing priorities, challenges
- Provide real solutions
  - Building on existing technology know-how, accepted practices
  - Demonstrate successfully
  - Involve customers early
  - Delivery quality
  - Understand motivators
- Aligns expectations and benefits
- Achieves faster market acceptance









#### Advancements are Needed

- Increase electronic durability to align with delivery norms
- Place intelligence / control where needed with capable communications
- Apply into standard practice: modeling, training, testing, simulation
- Effectively manage data relevancy; ensure security
- Create visualization, pre/post disturbance analysis, self-diagnostics, fool-proof operational schemes, warning mechanisms
- Develop adaptive protection schemes
- Standardize to easily interoperate and scale
- Integrate controls to meet wide-reaching utility needs that includes priority setting for adaptability
- Innovate and incorporate grid friendly end-use loads





## **IEEE Smart Grid**

IEEE is leveraging its foundation to develop standards, share best practices, publish developments and provide educational offerings to advance technology and facilitate successful Smart Grid deployments worldwide.



http://smartgrid.ieee.org

- IEEE Smart Grid portal
- Monthly e-newsletter
- Peer-reviewed publications
- Conferences
- Standards
- Technical tutorials
- Linked-In
- Twitter @ieeesmartgrid
- YouTube channel





#### Conclusion

- A smarter grid can accommodate more renewables, reduce demand and improve utilization, reliability and efficiency.
- Necessity for grid modernization
  - —Involve the consumer and community
  - —Seek state regulatory support and certainty
  - —Strike a balance: markets, consumer, regulatory, technology
  - Recognize that it is a journey: have a plan, progress logically, set reasonable expectations, address challenges, share lessons



Wanda Reder
VP – Power Systems Services
S&C Electric Company
Wanda.reder@sandc.com
773-338-1000 x2318





